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ABSTRACT

The results of an evaluation study of an RF mass gauging system
currently under development by the Instruments and Life Support Division
of the Bendix Corporation are presented. The potential limitations of
such a system are determined and possible modifications in system design
and measurement technique are discussed. In addition, an improved mathe-
matical model forpredicting the gauging response of the system is

developed.
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I INTRODUCTION AND SUMMARY OF RESULTS

A, Introduction

This final report presents the results of a study to evaluate a
RF mass gauging system that is currently under development by the
Instruments and Life Support Division of the Bendix Corporation,
Davenport, Iowa, Specifically, the study was divided into two major
tasks:

(1) Establish the potential limitations and deficiencies
of the RF gauging concept.

(2) Consider and recommend possible modifications in
system design and measurement techniques.
There were two main sources of information that were used in this
study: (a) the reports that have been issued by Bendix, and (b) dis-
cussions with Bendix personnel via telephone and during a visit by SRI

personnel to the Bendix plant,

The essential elements of the RF gauging system are shown in the
block diagram of Figure 1. The fundamental concept is simple: If the
cavity is large enough compared with a wavelength, it will support many
resonant electromagnetic modes. Thus, if the frequency is swept through
a band, energy will be reflected from the cavity for frequencies where
no resonance exists, and will be partially absorbed at any resonant
frequency. Thus, there will be a dip in reflected power as each resonant
frequency is traversed. (The amount of energy absorbed and the size of
the dip will depend on the losses in the cavity and the degree of coupling
to the cavity.) In principle, the number of dips in reflected power in

a given frequency band will be a measure of the number of cavity
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resonances in that band. Finally, the number of cavity resonances in a
given band will depend on the amount of dielectric material in the
cavity. Thus, it should be possible to calibrate the system so that
the amount (volume) of dielectric in the cavity can be measured in
terms of the number of dips in reflected power that are observed in a

given frequency band.

However,.in practice, a number of.factors complicate the utilization
of this system. The most important of these factors is the loss in the
system, and the effect of variations in this loss with frequency and
with the amount of dielectric material in the cavity., Therefore, a
major part of the first task of this study involved examining the
correctness and completeness of the math modei that has been used by
Bendix to analyze the effect of loss in the system. Section 1II of this
report discusses this math model in detail and describes our suggested

modifications.

In Section III, other important practical aspects of the system
are considered and evaluated. These include resonator coupling,
resonator geometry, and the effects of fuel movement, temperature,
perturbations in the cavity, and so on., Finally, our overall conclusions

and recommendations are presented in -Section IV.

B. Summary of Results
The major results and conclusions of this study are:

® The technique of fuel gauging by means of counting modes
of electromagnetic resonance in a large conducting cavity
appears to be both valid and feasible, provided that it
is used with a clear understanding of its limitations,

® The design and implementation of the current fuel-
gauging system being developed by Bendix, does, in
general, follow the basic tenets of good microwave




practice, However, a few recommendations for improve-
ment are made,

The exact configuration and geometry of a truly-large
cavity should not have a significant effect on system
performance. In particular, the introduction of pertur-
bations into the cavity should not alter the average
number of degeneracies and the exact location of the
coupling probe should not matter,

The ''space-diversity' probe being used by Bendix is a
good way to couple to the greatest number of modes, but
care must be taken in processing the resulting data to
avoid erroneous mode counts.

An improved mathematic model for the fuel-gauging system
has been developed and its limitations assessed, The model
should provide a good basis for design, but it is probably
not accurate enough to obviate the necessity for experi-
mentally calibrating the actual fuel-gauging system,




II MATH MODEL

A, Introduction

In this section, we discuss a mathematical theory for determining
the number of modes (resonances) in an electromagnetic cavity that are

detectable (observable) between frequencies f_, and f2, where the cavity

1
may contain an arbitrary amount of lossy dielectric material, The

theory must necessarily be approximate because, in general, the cavity

is asymmetrical and contains objects (perturbations) having complex
geometries; thus, exact mathematical solutions cannot be obtained in
closed form, The key assumption upon which the validity of this approxi-
mate analysis rests is that all major dimensions of the cavity are much
larger than the electromagnetic wavelength, If this is true, the

density of modes per unit frequency will be large and will be insensitive

to the detailed boundary conditions in the cavity.

B. Density of Observable Modes--lossless Case

Given the '"large-cavity' assumption, an equation for the density
of modes in a lossless cavity can be derived as follows: we assume that
the cavity is a rectangular parallelepiped having sides Lx’ Ly’ Lz.
(As mentioned before, the results should not depend on the exact shape
of the cavity.) Since the tangential electric field must be zero at

the cavity walls, the wave vector in any Fourier (plane~wave) decomposi-

tion of the modal fields must have a corresponding periodicity, that is
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where k is the wave vector, a , a , a_ are orthogonal unit vectors, and
Xy z

n =0, #, 2, ... . (2)
X,¥,2

Now, since there are always two orthogonal polarizations possible for
each set of integers (nx, ny, nz), there are two independent modes for
each "unit" cell in k-space, where the cell volume is given by (zn)%/LxLyLé‘
Thus, the number of modes between k and k + dk, where k = l;|, is equal
to twice the number of "unit" cells that make up the shell volume
between spheres in k-space having radii k and k + dk. Expressing this

relation mathematically, we have

4x 3 3 3
Py (k)dk = 2 X Y [(x + kd) - k }/[ (2n0) /LxLyLz] ,
or

v 2
pl(k)dk = -E'k dk 5 (3)

)

where pl(k) is the density of modes per unit wave number and V = LxPyLz
is the volume of the cavity. To express this relation in the frequency
domain, we use the fact that k = 2nf/c and obtain

8nv 2
pz(f)df =73 f df 5 (4)

c

where f is the frequency, c is the velocity of light, and pz(f) is the
density of modes per unit frequency. Equation (4) is known as the
"Hohlraum" formula in physics, where it occupies a fundamental place

in the analysis of black-body radiation.

We now wish to generalize Eq. (4) one step further so that it
includes the effect of a dielectric material that partially occupies
the cavity volume. To show the explicit dependence of Eq. (4) on

dielectric constant we rewrite it as follows:




p, (£)df = —= (") £oaf , (5)

where c0 is the velocity of light in vacuum and ¢’ is the real part of
the relative dielectric constant of the dielectric material filling the
cavity. If only a fraction, o, of the volume is filled with dielectric
material, ¢’ in Eq. (5) must be replaced by ¢’ (x), an effective dielec-
tric constant. One way to determine this effective dielectric constant
is to assume that the total mode density for the cavity is the sum of
two mode densities: the density in the volume oV of dielectric material,
plus the density in the volume (1 - o)V of vacuum (or, practically
speaking, air). This assumption neglects the fact that, for Eq. (5)

to be valid for these two contiguous volumes, there should be a conducting
wall at the dielectric~vacuum interface, In any event, use of this

procedure results in the following equation:

pz(f)df = 3K(a)f2df R (6)
where
K(a) = §£§ 1 + ba) 7)
3c
0
and
b = (@-')3/2 -1 . (8)

Comparing Eq. (6) with Eq. (5) we see that the effective dielectric

constant is

e'(a) = (1 + ba)2/3 . 9)



To find the number of modes, N(a), in a lossless cavity, between

frequencies f  and f, one simply integrates Eq. (6), thereby obtaining
3 3
N(a) = K(G)(fz - fl) . (10)

This equation says that N is a linear function of ol see Eq. (7)], which,
in spite of the assumptions used in the derivation, has been verified

experimentally for low-loss dielectric fluids such as liquid hydrogen.

In the lossless case, the total number of modes given by Eq. (10)
would be observable, except for degeneracies (two or more modes having
the same resonant frequencies). This assumes, of course, that we can
only distinguish modes on the basis of their resonant frequencies and
that we have no way to sample their field patterns. In this ''Hohlraum"
theory we have no way of computing the number of degeneracies, since
their number depends on the details of the boundary conditions. In
general, if there are no geometrical symmetries in the structure, there
will be no degeneracies. We can try to approximate the effect of
degeneracies by multiplying K(«) by a degeneracy factor, nd. Then, the

2 d

In general, "4 is a function of the frequency interval (fl, f2) and of
the geometry of the particular cavity of interest; thus, it must be
determined empirically., For simplicity, we will assume that Kd is not
a function of o, even though it is likely to exhibit some dependence

on this variable.




C. Density of Observable Modes--Lossy Case

In the Bendix system, a probe is coupled into the cavity and the
frequency is swept from fl to f2. The modes are counted by noting the
peaks in the power absorbed by the cavity--i.e,, the dips in the power
reflected by the cavity. There are, of course, losses in the cavity
walls and in the dielectric material, and a loading on the cavity caused
by the external measurement system. These effects combine to produce a
finite loaded Q for each mode, which means that the frequency response

of each mode is not a sharp delta function, but rather a broadened,

Lorentzian function of the form

1
R(f) = * - £ 2 5 12)
2 0
1+ 4
QL f
0

where QL is the loaded Q and fo is the resonant frequency.

Now consider the overall response of two adjacent modes having the
same QL’ but separated in frequency by an amount v, The total response
is the sum of two responses, each a function having the form of Egq. (12),

A study of this total response shows that if

v £ — , (13)

the response has only one peak and it occurs at f = fo + v/2, Here,
f 1is the resonant frequency of the lower~frequency mode. In other
words, the two modes cannot be resolved in frequency. On the other
hand, if v = fO/ZQL, there are two peaks and the two modes can be

resolved.



Hence, if all modes have the same loaded Q, there is a critical
frequency separation between modes below which no modes can be resolved.
Now, the frequency separation between modes is given by the reciprocal

of the mode density [Eq. (11)]. Therefore, at the critical frequency, f ,
c

we have
fc 1 14
2Q. 2 ’ (14)
L 3n K(x)f
d c
or
- 1/3
2QL /
f ={— 15
c 3ndK(a) ? 15)

where QL is a reference value of the loaded Q. Again, if all the modes
have the same QL’ éL’ all the modes are resolvable for frequencies

below f , whereas above £ none are resolvable,
c c —

We can now define a normalized frequency
M = £/f (16)
c
and write an expression for the observable mode density as

p(M) = p_(MEM an

where

- 2
P (M = 2QLﬂ . 18)

The function Q»(n) is obtained by rewriting p2(f)df [Eq. (11)] in
terms of T and making the identification of pm(n) with the coefficient

of dTj.

10




The function P(7)) gives the probability of observing a mode at the

normalized frequency Tl. In the case where all the modes have the same
QL-
PM)=1for 0 N<1 (19a)

and

P(M) = 0 for > 1 . (19b)

However, in a practical situation the modes in the frequency band

(£ fz) will not all have the same QL; that is, there will be a

1)
statistical distribution of values for QL. Our problem, therefore, is

to find a probability function P(7]) that accurately reflects the proper-
ties of this distribution and that reduces to Eq. (19) in the special

case when all the QL values are the same.

The problem of finding P(T)) is solved by noting the analogy between
the mode-counting problem and the problem of counting the number of
electrons in the conduction band of a metal, The latter case is de-
scribed by Fermi-Dirac statistics,1 which are based on two major

assumptions:
® The particles are indistinguishable

® No more than one particle may occupy a given energy
state (there are no degeneracies).
To make the analogy we may read 'mode” for "particle' and "frequency'
forv"energy." The modes in our case are indistinguishable because we
only observe them as peaks in the absorption of incident energy and
not as configurations of electromagnetic fields., We account for
degeneracies by the use of the factor, nd; that is, degenerate modes

are counted as only one mode.

11




In the case of electrons, the probability that an electron occupies

a given energy state, E, is given by the Fermi function:

F(E) = (20)

E -3 ?

kT

where k is Boltzman's constant, T is the absolute temperature, and QE

is the Fermi energy (level). At a temperature of absolute zero, electrons

occupy all states up to the Fermi level and no states above it. There-
fore, @F is analogous to the critical frequency, Ec’ and a temperature
of absolute zero corresponds to the case where the values of loaded Q

are the same for all modes. Having a distribution of loaded-Q values

therefore corresponds to having a finite temperature,

Accordingly, we seek a probability function of the form

1

1 + ey(ﬂ—l)

P(M) = . (21)

The parameter y must be related to the distribution of QL. This is
best accomplished by considering the probability density function for

QL’ p(QL). We take p(QL) to be proportional to the number of modes in

(fl, fz) with a particular value of loaded Q, divided by the total
number of modes in (fl’ fz). Of course, we normalize p(QL) so that
®
d =1 . 22
/ p(QL) Q (22)
0

The reader will recall that the quantity p(QL)dQL is the probability
that QL lies between QL and QL + dQL. Also, the average or expected

value of (1/QL), 1/6L, that corresponds to the given statistical

12




distribution is given by

o= [ (X
1/QL=/ <QL>p(QL)dQL . (23)
0

It is convenient, then, to work in terms of a normalized QL, QL, where
= Q . 24
5., Q /9 (24)

We designate the corresponding probability density function for this

normalized variable by the symbol B(éL).

Note also that for each value of QL’ there is a corresponding
critical frequency, f , as given by Eq. (14). Thus, there is also a
c

statistical distribution of critical frequencies, We define a

normalized critical frequency, T , by the relation
c

= f /f 25

ﬂc c/c s (25)

where f is the "average' critical frequency given by Eq. (15) when aL
c

is given by Eq. (23). There is also a probability density function for

which all .
M, which we call q_(1 )

To relate q (7] ) and 5(§L) [B(EL?is our measured quantity] we note
c c
that the probability that EL is between gL and §L + dgL must be the

same as the probability that né is between ﬂc and nc + dﬂc. Hence,

p(§L)d§L = qc(T])dT]c . (26)
From Eq, (15) we find that
1/3 :
M, =8, (27a)



and

1 _-2/3

= = . 27
dﬂc 3 °L dg (27b)

L

Substituting these results in Eq. (26) we find that
- 3.2
= 3 o 28
qc(nc) p(ﬂc)nc (28)

In practice, the probability density function for QL/aL’ E(gL),
would have to be determined empirically. Also, it need not be a
symmetrical function., However, for the purposes of illustration and,
hopefully, as a useful approximation, we will assume that B(gL) is a

Gaussian function:

2 2
-(§L-1) /2
e

1
21 o

p(g ) = , (29)

;

where ¢ is the root-mean-square deviation of §L from unity. From

Eq. (28) we have

2 3 2 2
3nc -(nc—l) /2
e . (30)

qc(ﬂc) = g

As the final step in this development‘we assume that the following

equivalence is valid:

M
— ‘ _ c ’ ’
1 - P(M) = prob (1] <1 ) _/ a_(M/)an’ , (31)
0
where P(ﬂc) is given by Eq. (21) and qc(ﬂ') is given by Eq. (30).:
c

Equation (31) states that, if the test value of T 1is small (< 1), the
C .




probability that there are smaller values of ﬂc is small; if the test
value of ﬂc is large (> 1), the probability that there are smaller
values of ﬂc approaches unity. We regard the assumption that this
probability equals 1 - P(ﬂc) as highly plausible, but we are unable

to supply a rigorous proof. The validity of the assumption, therefore,
must be tested by experiment, As a result of this assumption, we may

write an alternate expression for q (7 ):
c c

d
qc(ﬂc) = -d'ﬂ_,. (1 - P(ﬂc)] s

or (32)

v

[y
4 cosh [2 (nc - 1)]

qc(ﬂc) =

We wish Eq. (30) to approximate Eq. (32) as closely as possible. From

Eq. (32), note that

q G.i l) = 0.786 q (1) . (33)
C Y C

If we apply this result to Eq. (30), we find that

Yy~ . (34)

Hence, our final result is (assuming a Gaussian distribution for the

normalized QL values)

1
4.32(M-1)/o
+ e

PQM) = . (35)

1

15




D. Comparison of Models

The model that was developed in the last subsection is compared
in this subsection with the model currently used by Bendix. Bendix
uses an expression for the probability of observing a mode that is
different from Eq, (21). When we write the Bendix expression in terms of
normalized frequency we obtain

3
PL(M) = e~ 7N , 36)

where it has been assumed that their mode merging parameter B is equal
to 0.5. By using Eqs. (17), (18), (35), and (36) we obtain the two

corresponding expressions for observed mode density:

SRI:
- 2
2QLﬂ
p (M) = — , (37a)
1+ e4.32(T] 1)/c
Bendix:
2 —(2/3)T
p(M) = ZQLﬂ e f . (37b)

The behavior of these two functions is compared in Figure 2 for several
values of g. As indicated, the two functions behave dissimilarly

except for g = 1.

Thus, the Bendix model seems to imply that a broad, but single,
distribution of values exists for the loaded Q in every‘situation,
whereas we know that the distribution of loaded Q values can be different
in each situation, and a parameter that is a measure of this distribution
should enter into the mathematical model. Some adjustment of the Bendix
model is possible by varying their mode-merging parameter, B, but any
significant deviation of this parameter from a value of 0,5 obscures

its physical meaning. Moreover, the Bendix model does not produce the

16
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correct results in the limiting case where the loaded Qs of all the

modes are the same.

*
It probably would be impractical, without automated equipment to

measure the loaded Qs of, say, 1,000 modes (or resonances) to determine
the statistical parameter g. On the other hand, ¢ can be considered as
a curve fitting parameter and its approximate value determined from
experimental gauging responses that are obtained using a scale-model
tank (one might have to assume something other than a Gaussian distri-

bution for the loaded Q to obtain a good fit). However, even though one

* .
Automated methods for measuring Q aré discussed in Appendix B,

17



uses an approximate value for g, this new model should be more accurate
than the Bendix model unless it turns out that ¢ = 1. Physically,

this situation would correspond to having the loaded Q range from very
low values to more than twice the average value. In all fairness, it
would not be unreasonable to expect such a distribution to occur

occasionally in practice,

For eithe;\model, the number of observable modes, No(a), in the
frequency band (ﬂl, ﬂz) is obtained by integrating p(7) from “1 to nz.*
Depending on the choice of these limits, one can obtain either a positive
or a negative slope for No(a). To see this in a qualitative way,
we first consider the behavior of ;c(a) [see Eq. (15)]. For low-loss
dielectrics, aL(d) does not change significantly as o increases (see
discussion in Section E.2), and so the dependence of Ec on o is
determined by K(w). We see that, as o increases, K(a) increases [see
Eq. (7)] and so fc(a) decreases. However, for high-loss dielectrics,
QL(a) decreases rapidly with increasing o, and so in this case fc(a)
decreases even more rapidly. The net result of this behavior is that,
as o increases from 0 to 1, ﬂl(a) and nz(a) move to the right along the
abscissa in Figure 2, The effect on the gauging response, No(a), of this
relative motion of the end points of the frequency band is illustrated
in Figure 3. The curves on the left-hand side of the figure each
represent mode dénsity as a function of 7 in a typical case. The curves
on the right-hand side of the figure show the corresponding gauging

responses as functions of a,.

Figure 3(a) illustrates the case where the end-point frequencies
are well below the critical frequencies for both the empty and the full

cavities, The cross hatched areas represent the integrals of the mode

* .
Techniques for integrating Eq. (37a) are described in Appendix A,

18
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density for the empty and full cases. In this regime, mode merging is
not significant and the gauging response is a linear function of o;

that is, the gauging response is determined by K(a) and not by QL(G).

Figure 3(b) illustrates the case where both end-point frequencies
are below the critical frequency for the empty cavity, but one or both
of the end-point frequencies are above the critical frequency for the
full cavity. In this case, the gauging response first increases somewhat
as does the curve in Figure 3(a), reaches a maximum, and‘then decreases.
The exact shape of this curve depends on how QL varies with o and, of
course, upon ¢g. This flat, double valued curve is the most unsatisfactory

kind of gauging response and cannot be used.

Finally, Figure 3(c) illustrates the case where the lower end-point
frequency is well below the critical frequencies for both the empty and
the full cavities, whereas the upper end-point frequency is well above
the critical frequency in both cases. In this case, we can show that
the integral of the mode density is essentially independent of ¢, with

the result that

2 - 3
No(a) ~3 QL(oz) - K(oz)f1 . ({38)
If éL(a) = a constant,
dNo 3
?a—'% —bK(O)f1 . (39)

Therefore, a gauging response with a constant negative slope would be
observed in practice if the dielectric liquid in the tank were lossless
and the frequency limits were chosen according to the above prescription.

However, for a lossy dielectric liquid, such as liquid oxygen, the
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gauging response is dominated by the behavior of éL(a) and the gauging
response becomes very nonlinear [see Figure 3(c)]. We note, however,
that the slope of the gauging response for a lossy dielectric typically
is much greater than for a lossless dielectric. Thus, having a lossy
dielectric should improve the measurement precision, but only if the
dynamic range of the measurement system is large enough to avoid mis-
counting the modes when the filling of the cavity with lossy dielectric

reduces the measurement sensitivity.

This sort of general behavior of gauging response according to the
choice of end-point frequencies was also noted by Bendix. For example,
for liquid oxygen they stated that the optimum choice would be fl as
the frequency where the mode density for the filled tank was at a maxi-
mum, and fz as the frequency where the full-tank mode density went to
zero, This choice is similar to the case shown in Figure 3(c), but would
result in an even more rapidly decreasing gauging response than that
shown in the figure. This choice can probably be considered to be
optimum for lossy dielectric fluids (from the point of view of maximum
measurement precision), provided that the coupling to the filled cavity
is not so weak that modes become undetectable, On the other hand, the
critical frequency for low-loss dielectric fluids may be so high that a
practical choice of frequency band leads to the linear response shown in
Figure 3(a). 1In this case, the choice of an optimum band might be based

on the availability of components or on the minimization of equipment

complexity and cost.

E. Accuracy and Limitations of the Model

Based on our previous discussions, we can identify four problem

areas that will limit. the accuracy of the math model:

(1) Breakdown of the Hohlraum assumption for nearly
empty or nearly full cavities.
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(2) Practical difficulties in accurately determining
QL(G) and .

(3) Degeneracies and spurious modes,
(4) Variations in coupling.

A discussion of each of these points follows.

1. Breakdown of the Hohlraum Assumption

The theory assumes that the total density of modes in the
cavity is equal to the sum of the density of modes in the dielectric
material and the density of modes in the vacuum. However, if only a
small amount of dielectric material is in the cavity, the subvolume of
dielectric material is not large compared with an electromagnetic wave-
length, which contradicts our basic Hohlraum assumption., By comparing an
exact analysis of a simple rectangular cavity that is partially filled
with dielectric material with the results obtained from our theory,
we find that the true value for the density of modes in a small volume
of dielectric material is always slightly less than the value predicted
by the Hohlraum theory. This effect causes the theoretical gauging
response to overestimate the true mode count over the whole range of «.
This means that, for a given value of mode count, the theory under-
estimates the true value of o, 1In the example studied, the error in o
was approximafely 0.01, independent of @, The corresponding percentage
error as a function of o is shown in Figure 4. Obviously, for small
values of o the percentage error in o becomes very large., In principle,
this error in prediction could be significantly reduced for all but the
very smallest values of o if an appropriate effective volume and
dielectric constant were used in the theory. However, determination of
these effective values would require that some measurements be made on

the cavity for various values of o, which might not be worth the trouble.
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A similar breakdown in the Hohlraum assumption occurs when the
cavity is nearly full, In this case the subvolume of vacuum (i.e, air)
is not large compared with an electromagnetic wavelength. In addition,
the situation can arise where most of the modal energy resides in the

dielectric material and the modes in the vacuum are 'cut off,"” that is,
their fields decay exponentially with distance, This results in the

mode density in the vacuum being effectively reduced even further.
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However, since the total mode density in the "nearly full” case is
determined primarily by the mode density in the dielectric material,

which is larger than that for the same size air space in the 'nearly
empty"” case, we would expect the predictive errors caused by uncertainties

in the vacuum mode density to be relatively small,

2. Determination of 6,(0)
1

The symbol aL(a) represents the average value of QL for a
particular value of o. Since the determination of the average value
requires a large number of measurements, it is only practical to make
the measurements for one value of o, say o = 0, Therefore, we need a

relationship that will allow us to predict aL for other values of «.

In general, the loaded Q of a mode having a resonant radian

frequency of wo is given by the relation

P
1 ¢

T 29 W ?
Q, 2w

(40)

where ZPL is the sum of all the powers dissipated in the cavity or
escaping from the cavity, and WE is the total energy stored in the

electric field. Equation (40) is usually written in the form

1 _ 1. (a1a)
QL"Q Q ~
e u
or
1 _1+B . (41b)
Q Q ‘
L u

v

Here, Qu is the 'unloaded” Q that is related to the power that is

dissipated inside the cavity (wall and dielectric losses), and Qe is
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the "external' Q that is related to the power dissipated in the external
measuring system. Alternatively, the coupling parameter B may be used

instead of Q . Note that Qu can be decomposed still further as follows:
e

i_1r 2 (42)
Qu QO Qd

where QO is determined by the power dissipated in the walls and Qd by
the power dissipated in the dielectric material inside the cavity.

The quantity Qd is called the 'dielectric Q." We need to consider these

various Q factors in turn to see how they might vary with a.

First consider QO. It is well known from quite general

considerations that for any mode
%
) =B |f 43
QO( ) 0[ 0(oz)] s (43)

where fo(a) is the resonant frequency for a particular value of o and

BO is a proportionality constant that is independent of o, Thus, each
mode with a different resonant frequency has a different Qo. Now, as

the cavity is filled with dielectric material, a given mode at frequency
fo will be replaced by another mode that originally had a higher resonant
frequency, Therefore, the value of QO associated with a particular
frequency fo would not depend on o except for the fact that the propor-

tionality factor B_ is, in general, different for each mode because of

0
the geometrical effects associated with the different field configurations
of each mode. However, because there are many modes involved, it is
reasonable to assume that the average value of (1/Q0) over the band

(fl, fz), 1/50, does not depeﬁd on a——thaé is, we expect an increase in

QO at one frequency to be compensated by a decrease in Qo at another

frequency.
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Similarly, for the external Q, Qe’ it can be shown that
=B f (a
Qe(oz) o 0( ) ’ (44)

where Be is also a proportionality constant. Hence, we may use the
same reasoning about Q (a) as we did for Qo(a), and thus we assume that
e

the average value of (1/Q ), 1/6 , does not depend on a.
e e

The dielectric Q, Qd, is different. Suppose the dielectric
material in the cavity has a complex relative dielectric constant of
e’ -je’. Then a general relation for the dielectric Q of a partially

2
filled cavity is given by

1 _ 1 we' -
Qd(O') Qd(l) WE Qd(l)

¥ (o) s (45)

where W , is the electric energy stored in the dielectric material,
€

WE is the total stored electric energy, and

L =] (a6
Qd(o’) = . )

In general, the filling factor, ¥ (o), can be written as

2
e'f IEI dv
aV

Y(a) = . (47)»

e'fl_ﬁlzdv +/ IElzdv
1)V

aVv
If, for a large cavity, we assume
- 2 2 .
|E| “dv ~ AV E , (48)
AV
aV
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where AV is any subvolume in V, then we obtain

’
ae

Y(a)% 1 +a(€l_1)

. (49)

Analysis of a simple cylindrical cavity partially filled with dielectric
material shows this to be a good approximation. In this approximation,
Qd(a) is the same for every mode and so the average value of l/Qd(a)

is the same as 1/Qd(a).

As a result of all the assumptions discussed above, we can
now use Eqs., (41a), (42), (45), and (49) to write the following

expression for the average value of the reciprocal loaded Q:

1 ae’
Qd(l) 1 +a( -1)

11 (50)
(@ § @ ’
e 0

From this equation,* we can determine one of the three quantities
l/aL(O), l/ae, and 1/(—;)0 if the other two are known. To determine the
average reciprocal Qs, we must first measure the loaded Q of all the
modes in the empty cavity for the frequency band (fl, fz) and then find
the probability density function p(QL). Use of Eq. (23) then gives
1/§L(0). Similarly, measurement of QO (or Qe) for all the modes and
subsequent use of Eq. (23) with QL replaced by QO (or Qe) gives 1/60
(or 1/6e).

The point is that to make such a large number of Q measurements
may or may not be practical, depending on the equipment available. One

may be forced to limit the number of Q measurements that he makes and

*
Note that this equation differs slightly from the one used by Bendix--
i.e., Eq. (2.31) in Ref. 5.
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thereby increase the uncertainty in QL(G)- Since NO(OD depends on
éL(a), this uncertainty in éL(a) will introduce an error in the gauging
response. The magnitude of the error in gauging response will depend on

the magnitude of éL and the choice of frequency limits,

Similar comments apply to the determination of ¢, since p(QL)
is also required. However, No(a) is not as sensitive in general to
errors in ¢ as it is to errors in aL(a). Alternatively, one could
choose, as we have mentioned, to determine ¢ by considering it as a
curve-fitting parameter and selecting its value to provide the best

fit between the theoretical and measured gauging responses,

3. Degeneracies and Spurious Modes

We have already mentioned the problem of degeneracies: two
or more modes get counted as one mode and the effective mode density is
less than that predicted by theory. We attempt to account for this
effect by multiplying K(a) by a factor %d’ which, for simplicity, we
assume is independent of o. The use of nd is equivalent to the use by
Bendix of an "effective volume.' The implication of this is that the
same percentage of modes will be lost, regardless of whether the total

mode count is high or low,

The validity of the assumption that nd does not depend on «

- is uncertain., Intuitively, we can visualize the introduction of
dielectric material into the cavity as breaking some degeneracies, while
causing other previously nondegenerate modes to coalesce., An analysis
of a partially filled cavity having a simple shape might indicate the
degree of validity of this approach, but there was not enough time to

carry out such an analysis in this study.

The parameter nd can be determined empirically from a measure-

ment of the empty-cavity mode count., This determination is most easily
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accomplished when the frequency band is chosen in correspondence with

Figure 2(a) because
N (0) = K(o)[f3 £] (51)
o’ " Ma 2~ h .

This assumes that no modes are so badly undercoupled that they cannot
be detected. If this is not true, "4 cannot be measured readily unless

the number of undetectable modes is known,

One must be concerned with spurious resonances if there are
objects in the cavity that are sufficiently decoupled from the cavity so
that they can support their own high-Q resonant modes. For example,
such an object might be a ladder in the fuel tank. If such spurious
modes are detected, it is not a fundamental problem because it should
always be possible to design any extraneous objects in the cavity so
that the Q of any self-resonance is much lower than the Q of the cavity

modes, Wwithout damping the cavity modes.

4, Variations in Coupling

One reason that variations in coupling occur is because the
interaction of a mode with the coupling element (probe, loop, and the
like) depends very much on the electromagnetic field configuration of
that mode. The fact that the cavity is large compared with a wavelength
does not change the situation. By the same token, the Hohlraum theory
cannot predict this effect~--that is, the loss of observable modes
through insufficient coupling. The best we can do is to multiply No
by a factor ns to try to take account of this reduction in mode count
if it occurs, Like ud, ns must be determined empirically, and it is

difficult to measure if degeneracies also occur,
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In practice, it would be best to avoid having insufficient
mode coupling, if possible. One approach for accomplishing this is to

use a "space diversity' probe like that currently being used by Bendix.

In this way, modes that are not detected by one probe are likely to be

detected by another, having a different location and/or orientation.

A variation in coupling that occurs for every'mode and that
is implicifly contained in theory is the one that occurs when a lossy
dielectric material begins to fill the cavity. This variation in
coupling is described by the average coupling parameter, E. The

following equation for B is obtained from Egs. (41b), (42), and (50):

) CWER
B(a) = = . (52)
1+ QOY(Q)/Qd(l)
If we define
B =Q/Q (53a)
e 0 e
and
Bd = QO/Qd(l) , (53b)
Eq. (52) becomes
_ By
B(a) = I_'F—-EW . (54)

A plot of E/E as a function of o is shown in Figure 5 for several

e :
values of Bd' We see that, for finite values of Ed’ the coupling to the
cavity decreases as o increases., For liquid oxygen, a typical value

for Ed is a number greater than 10. Therefore, in this case we can
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expect an order of magnitude reduction in the average coupling as the
cavity is filled. Hence, the coupling factor for the empty cavity and
the sensitivity of the detection system should be large enough so that

modes are not undetected when the cavity is filled.

F. Comparison of Theory and Experiment

Now that we have discussed the theoretical math model in detail,
it is of interest to compare the theory with some experimental data that
have been obtained by Bendix. The most complete set of data available
to us was obtained for the Bendix cryogenic tank.s’4 Unfortunately,
there were not enough data pertaining to Q to allow us to determine p(QL).
Therefore, we used simple arithmetic averaging of the available data

to estimate that
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50 = 13,000
and

g = 0.24 .

The other parameters given for the system were

f_ = 1,03 GHz,

1
f2 = 2.0 GHz,
and
3
V=20,8876m .

Finally, the corresponding material parameters were:

Liquid hydrogen:

e =1.2
-7

¢’ =10

b = 0,31
B.=1.1%x 10
By X

Liquid oxygen:

e’ =1.5

e = 0.00136
b = 0,84

= 11,8
Bd

From the given volume and the known velocity of light, we find that

-25
K(0Q) = — = 2,75 X 10 . (55)
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First, consider the experimental data for liquid hydrogen shown in
Figure 6. In this case, we calculate that -f-c(O) = 3,2 GHz and
fc(l) = 2,9 GHz. Hence, ﬂl ~ 0,33 and ﬂz ~ 0,67, which means that the
gauging response should be linear if o < 0.4. We see that the measured
gauging response shown in Figure 6 is indeed linear, We note that

NO(O) = 1450, so from Eq. (51), we find that
n, = 0.764 R (56)

where we assume that no modes have been lost because of insufficient
coupling. Now, because our frequency band is well below the critical
frequency, we can use Eq. (10), multiplied by nd, to calculate the

gauging response. This result is also shown in Figure 6. Since the

slope of this curve does not match that of the measured curve,
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we must conclude that the value of the dielectric constant used in

the theory was not the same as that of the actual fluid.

The experimental data obtained for liquid oxygen in the same cryogenic

tank are shown in Figure 7 as the heavy solid curve., We immediately
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note adiscrepancy which we cannot explain: NO(O) in this case is
different from the value obtained in the liquid-hydrogen case.
Apparently, this means that something in the system changed between

measurements.

To complete our theoretical comparison, we have no choice but to
use the value of Kd obtained from the liquid-hydrogen ddta--that is,
Eq. (56). The light solid curves in Figure 7 show the corresponding
responses that we calculate for two different values of_o. For
comparison, the dashed curve shows the theoretical results computed by
Bendix using their math model. The fact that their curve does not
agree with our ¢ = 1 curve indicates that they must have used different

values for the parameters,

None of these theoretical curves agree well with the measured
curve, If we compute the values for the critical frequency, we find

that
f (0) = 3.2 GHz,
(¢4

which means that

0,32

=
"
~
O
~r
i

and

=
N
~
(=)
~
i
[=]
L]
27
[\
L]

Similarly,

which means that

= 0.86

=3
=
~
o
S~
|
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and
= 1.67 o
ﬂz(l)

Thus, we see that the case shown in Figure 3(b) is applicable. Therefore,
to make our theoretical curve come closer to the measured curve, we

must assume a lower value for the loaded Q so that the critical frequency
will be lower [see Eq. (15)]. The broken curves in Figure 7 shéw two
examples of the results that are obtained when lower ao—values (resulting
in lower aL)are assumed. As indicated in the figure, the assumption

of a fairly low aolresults in much better agreement between theory and
experimeht, provided that the parameter ¢ is also varied, It appears
that further variation of the parameters in the model might provide

better agreement,

Unfortunately, this example does not prove the validity of the
model., The model seems to predict the right kind of general behavior
for the gauging response, provided the proper parameter values are
used. Although we have not shown that it is possible to measure
these parameters, we feel that it should be possible to do so if
enough Q measurements are made, and if the system is stable so that the

data are repeatable,
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IIT GENERAL MICROWAVE RESONATOR AND SYSTEM CONSIDERATIONS

A, Resonator Coupling

After extensive experimentation, Bendix has adopted--as its
definitive method for coupling to the microwave resonances of the fuel
tank--a composite probe comprising four elements, each of which is best
described as a short E-field probe, (Dcscribing them as monopoles is
not recommended because the ground plane for each "whip" is not clearly
defined and the length of each "whip” is not intended to be quarter-
wave resonant.) The orientations of the four elements are ''randomized"
(within reason, insofar as mechanical convenience has allowed) and the
average spatial separation is about one-fourth the mean operating

wavelength (see Figure 5-10 of Reference 4),

Since no theory could adequately comprehend all the factors
involved, it can be accepted that this arrangement is adequate, and
perhaps optimum, if empirical studies (i,e,, experimentation with
different orientations, separations, and numbers of probe elements) have
not produced a coupler giving better results for the particular tank,
dielectric fluid, and frequency range of interest. ''Better results"
may be iﬁterpreted simply as indicating an observed mode count that is
higher, and presumably closer to the theoretical; no coupler can intro-
duce counts that should not be there, but a less than ideal couplér can
allow modes to go uncounted, Because this probe samples different
directions in space, and because it is assumed that the cavity dimensions
are very much largér than a wavelength, the position of the probe in the

cavity should not matter,
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The elements of the Bendix multiprobe coupler are not fed in
parallel, Rather, they are fed singly, in time sequence, with the
resultant four sets of mode detection data processed appropriately,

" Appropriately' here means that at any one frequency a mode should be
counted even if it is ''seen' by only one of the probes, At the same
time, a mode should be counted no more than once even when if is "'seen"
by all four probes, The processing used should be made relevant to

these criteria, rather than considered as merely "summing” and
"averaging." For example, suppose a certain frequency interval contained
M + P resonant modes, where M modes coupled to all four probes and P
‘modes coupled to only one probe, ''Summing'' and "averaging" the four
output counts (as.suggested on Page 55 of Reference 4) would incorrectly
yield'M + P/4 modes. Summing and averaging the video waveform prior to

counting, however, could give a correct result,

One may ask if it would not be simpler and cheaper to connect
the diversity probe elements in parallel rather than switch them
sequentially, As a general principle, yes, but as a practical possi-
bility, no, Over the wide frequency range required, the finite lengths
of transmission line between elements would lead to wild fluctuations
of the overall input impedance, and at some frequencies one or two of
the probes might be fed no power at all, The phases of the excitation
of the several probes could also possibly be such as to produce zero
net coupling to some resonant mode in the tank,'whereas this is unlikely
with ohly one probe fed at a time, and the remaining probes isolated at
that time. The techniques currently in use (assuming corfect mode-

pattern processing) therefore appear justifiable,

The coupling to a resonant mode in a cavity can either be under,
over, or critically coupled, as is well known, In examining the
frequency swept reflected signal from the coupling probe, the '"suck out”

(or "dip") will be deepest at critical coupling. With under coupling,
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the "suck out" will be less deep, but its width will be narrower., With
the present means of processing the video waveform to detect resonances,
the increased narrowness of the ''suck out' might increase its chances of
detection about as much as the decreased depth may have lessened the
chances, It is apparent, therefore, since the tightness of coupling
must vary widely from mode to mode, that the best approach is to keep
the probes sufficiently short so that the under-coupling condition will
predominate, Critical coupling would then also be observed for some
ques, but over-coupling only rarely. With over-coupling, the "suck

outs" are both wider and shallower, and the chances of detection doubly

worsened,

It is of interest to note the technique* used by microwave oven
manufacturers to couple into their over-moded resonators, Their coupler
(usually a waveguide iris only slightly smaller than the feed waveguide
with which it is combined) is pre-adjusted to be matched into free
space, This coupler is then found to be about optimum over a wide range
of oven loadings (with foodstuffs, plastics, and so on), This result
is consistent with the picture that the Q values are quite low and
that the input energy makes relatively few "bounces' around the chamber
before it is absorbed. The locations of the feed, the stirrer (which

is often designed remarkably like the revolving mirrors in a dance

hall), and the material to be heated are arrived at by assuming the RF
energy arrives along a straight line path and "bounces off" the
conducting surfaces for just a few passes., In this case (with tight
coupling and low QL), it is evident that a multiplicity of modes is
being excited (it takes many modes to synthesize a plane wave) even

though the frequency is singular, and even when the "stirrer" is not

*
Gerling Moore, Inc,, private communication.
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moving, In other words, we may say that many modes have 'merged.” A
comparable situation in the fuel tank gauging system would therefore
be highly undesirable, This discussion, hopefully, contrasts the
"microwave oven' and ""fuel tank' situations, In particular, the idea

of an antenna radiating into free space and "illuminating” (well or

badly) the interior of the fuel tank is inapplicable,

B, Resonator Geometry

The basic premise of a cavity with very large dimensions compared
with a wavelength leads to the conclusion that the total mode count
over a given frequency range depends only on the volume enclosed and
not on the specific dimensions of the cavity or its shape. Perturbations,
except for the effects of losses which may make a mode more difficult
to count in the experimental situation, should therefore only alter
the total mode count in proportion to the perturbing volume, This
means that the insertion of struts, ladders, probe supports, and the like,
into the cavity should only result in a mode count that is appropriate
to the final volume, though care should be excercised to avoid the
introduction of lossy materials, resistive contacts, and so on, One
should also be aware of the possibility that the insertions may create
partially shielded ""subvolumes' with dimensions comparable to the wave-
length, Such subvolumes will reduce the mode count because their
effective electrical volumes will be less than their physical volumes

by an amount which is difficult to predict,

It is possible that a perturbation of the cavity (e.g., a strut
or ladder) might support its own resonénce, or series of.reéonances, in
the frequency range of interest. The dependency between total mode
count and dielectric filling might then be thrown off, In the case of

the fuel tank, it appears inconceivable that such resonances (e.g., from
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a slot of critical length) might be so "'screened off" from the tank
volume that a narrow "suck out” would appear in the frequency swept
video waveform--that is, only in the most unlikely case of a high-Q
parasitic resonator being but weakly coupled to the fuel tank volume
would the dip appear in the trace, An example of such a parasitic
resonator deliberately contrived to illustrate the effect (and the
unlikelihood of its occurring by accident) would be a small, hollow,
metal volume interconnecting with the fuel tank by means of only a

small hole,

For cavities with symmetry about one or more axes, 'degeneracies'
indeed occur, and the modes that can be counted are fewer than the
number that actually exist., In the case of a cavity whose dimensions
are only a few times larger than a wavelength, distorting a wall or
introducing some other symmetry destroying perturbation does effectively

"break up'' the degeneracies and increase the total mode count,

In the case of cavities with dimensions very large compared with a
wavelength, however, the situation is quite different., The mode density
is very high and the spacing between most modes is small., Any pertur-
bation capable of resolving a degeneracy by frequency shifting one of
two merged modes enough for it to be countable could, with equal likeli-
hood, shift it into superposition with some other nearby mode. There
is no choice but to conclude that it is pointless to even consider
solving the "degeneracy problem’” through deliberate introduction of
deformations or perturbations into the truly large cavity. An asym~
metrical location or orientation of the coupling probe could, however,
have merit, but only as an additional degree of diversity for a

diversity type probe,

When all cavity dimensions are large compared with the wavelength,

‘the unloaded Q, Qu = QO (assuming ideal lossless dielectric filling)
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should not be enormously affected by whether the cavity is reentrant

or not, However, the QO for the reentrant case should be somewhat lower
than for the nonreentrant case, since lower volume-to-surface ratios
will be encountered (locally or globally), Experimental observations
indicating a significantly reduced QO in the reentrant case might well

be caused by artifacts such as extra resistance in a welded joint,

The effects of intermittent contacts and excessive resistance in
a Qelded or clamped joint can be considerable when the QO in the absence
of these effects can potentially be quite high, The basic premise of a
cavity all of whose dimensions are very large compared with wavelength
leads to the conclusion that changes of cavity shape or position of
internal objects that do not alter the net volume cannot affect the
mode count, Therefore, rigidity (of a probe and the like) should not
have to be maintained, in principle, Any detrimental effects caused by
relative motion between parts that are observed would probably be

traceable to the effects of intermittent or lossy contacts near a joint,

Threaded joints are notoriously lossy and unreliable at microwave
frequencies, Even when the fit appears tight, contacts may only be
occurring at a few well separated points, Threaded joints should
categorically be avoided unless the circumference of one turn of the
thread is a very small fraction of the smallest wavelength. When a
portion of a cavity wall must be demountable, a "biting edge' contact
design--with pressure applied at a multiplicity of points--is

recommended,

C. Fuel Movement

The most fundamental assumption on which the chosen fuel gauging
method has been based is that the total number of modes of resonance

possible (in a given frequency range) is independent of the location or
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distribution of the dielectric material that may partially fill the
cavity., This assumption becomes justified when all cavity dimensions
are large compared with a wavelength; the larger the ratio of cavity
dimensions to a wavelength the greater the accuracy and consistency of
the results based on this assumption, For the large ratios applicable
to the system being studied, the variation in the total number of modes
possible, occurring as a given amount of fluid changes shape or

position in the tank, should be very small.

However, if the movement of the fuel could somehow affect the
coupling between the probe(s) and the cavity, the observed mode count
might change whenever the coupling became too weak or too strong, For
example, one might visualize the case of a substantial quantity (say,
of the order of half the tank volume) of high dielectric constant,
low~loss fluid ﬁoving to the tank end furthest from the coupling probe,
The concentration of stored energy in the dielectric could well make
Qe much higher (weaker coupling) than when the fluid is closer to the

probe,

A more likely effect is the change in the electrical properties
of the probe(s) that immersion in a fluid of arbitrary dielectric
constant and loss factor might produce, Either an increase or a
decrease in the ability to count all the cavity modes might then occur

as the fluid moved toward the probe(s).

In conclusion, one is compelled merely to recommend that the
coupling probe(s) be designed and adjusted so that the highest possible
mode count (fewest modes lost because of inadequate coupling) is
obtained with a given filling of fuel (or simulated fuel) located in
the worst possible (empirically determined) position with regard to

the coupling effectiveness of the probe(s).
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D, Temperature Effects

The possible effects of changes in temperature on the fuel gauging
system should be divided into two types: (1) effects that change the
total number of modes that can exist in the cavity, and (b) effects

that affect the observability of the existing modes,
In category (a) we have the following possible effects:

(1) Changes in the volume of the tank because of
temperature-induced expansions or contractions
of the metal walls,

(2) Warping or changes in the shape of the tank.

(3) Changes in the dielectric constant of the
dielectric fluid in the tank.

(4) Changes in the dielectric properties of the foam

insulation sometimes used as a liner within the

cavity, between the fluid and the metal tank (and

of any other dielectric objects that might be in

the tank), ’
The changes in the number of existing modes produced by effects (1),
(3), and (4) should all be predictable, and can be taken into account
when necessary, This may require the use of one or more temperature
sensors and a compilation of the several temperature coefficients
involved. The change caused by effect (2) should be nil, as discussed

in Section III-B,
The possible effects to be enumerated under category (b) are:

(1) Changes in the RF loss in the cavity walls or in the
dielectric material within the cavity,

(2) Changes in the coupling to the cavity,

Both effects (1) and (2) alter the loaded Q of the cavity, and hence

they affect the observability of modes because they affect the depth
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of a "suck out”" and the degree to which the modes merge, If the
loaded Q is dominated by one source of loss--for example, by the loss
in the dielectric fluid--then changes in wall losses or coupling are
not likely to have a significant effect, On the other hand, for low-
loss fluids, effects caused by changes in wall losses or in coupling
are more likely to be noticeable, Note, however, that although the
coupling might be affected if the coupling probe elements employ
dielectric materials or metals whose properties change significantly
with temperature, it is hard to conceive that such effects would be

appreciable,

E, Data Processing

1

Consider the representative fragment of ""detected mode pattern'
of Figure 8, as supplied by Bendix (Figure 4-10, Reference 5). In
the frequency interval A (and assuming the modes to be counted are the
upward pointing spikes), four modes would be counted by the Bendix
signal-processing methods. These four spikes have roughly the same
width, which is about as narrow as any of the modes in the entire mode

pattern, However, it is possible to visualize that these four modes

FREQUENCY —
2.1 TO 2.25 GHz

SA-3854-7

FIGURE 8 REPRESENTATIVE DETECTED MODE PATTERN.
Source: Figure 4-10, Reference 5.
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are "'riding" on a mode of substantially lower QL--that is, a mode whose
width is roughly A, The correct count for frequency interval A should

then be five,

Similarly, visual inspection of the interval B suggests that, in
addition to the several high QL modes there are three low QL modes
(of width about B/3), plus one very low QL mode of width =~ B that should
be added to the experimental count before it might be compared with the

theoretically predicted count,

The foregoing assumes that the supplementary extra low QL modes
indicated--which are essentially coarse and extra coarse undulations of
the base line--are not modes of resonance excluded by the theory (e.g.,
a resonant ladder) nor are they caused by frequency dependent RF circuit
components external to the fuel tank, After verifying that this is not
the case, a possible technique for detecting the very low QL modes
might be based on successive stages of low-pass filtering of the video
waveform with supplementary counting provided at each stage to record

the number of low QL’ extra low QL, and so on, modes,

F, System Errors

In discussing the errors associated with any measuring system, one

must note the distinction between precision and accuracy, If a measuring

system exhibits only small random errors, if is said to possess high
precision; the accuracy is high, on the other hand, only if the
systematic errors are small, Thus, the mean deviation of data points
from a "best-fit'" curve obtained by regression analysis is a measure
only of the precision, The accuracy, however, would be determined if
we knew how closely the gauge reading agreed with the actual amount of
fuel in the tank. Thus, the accuracy will depend on the way the gauge

is calibrated and on whether any systematic changes in mode count can
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occur that are not related to the amount of fuel in the tank. For
example, empty-cavity mode count shifts of 25% have been observed

by Bendix, The occurrence of such a shift in an operating system

would result in a significant change in the fuel gauge reading,

Figure 4 shows that, when there is a small amount of fuel in the tank,
the resulting percentage error can he very large, Obviously, therefore,
such systematic shifts in mode count cannot be tolerated in a working

system,
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IV CONCLUSIONS AND RECOMMENDATIONS

In this study, both theoretical and practical aspects of the Bendix
RF fuel-gauging system were examined, The Bendix technique of counting
electromagnetic modes of resonance appears to be both a valid and a
feasible way for gauging fuel in large space-vehicle fuel tanks, Also,
the design and implementation of the fuel~gauging system does, in
general, follow the basic tenets of good microwave practice, However,
the system does have some limitations which are important to understand,
These limitations, as well as a few recommendatiqns for changes in

practical technique, are discussed below:

® The coupling to the cavity should be adjusted so that
the "under coupled” condition will predominate over
the frequency range of interest, This condition will
provide the greatest probability of observing a mode,
assuming that the detector and mode processor have
adequate sensitivity.

® The data processing techniques in use by Bendix will
introduce mode-counting errors if: (1) there are
some very low Q modes intermingled with the more
prevalent high modes, or (2) correct procedures
are not used in consideration of the fact that the
individual probes in the ''space-diversity' probe may
each couple to different numbers of modes, To count
the low Q modes, if they are present, would require
additional steps in processing, To avoid errors
caused by misinterpretation of diversity probe action,
the video waveforms should be summed before the modes

are counted,

® Since the cavity dimensions are all so very large
compared with a wavelength, the addition of pertur-
bations to the cavity should have very little effect
on the average number of degeneracies that occur in

a given frequency range,
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Transient changes in the loaded-Q--such as might be
produced by changes in losses, coupling, or movement
of the dielectric fluid--should not significantly
affect the gauging response unless they produce so
drastic a change in the average loaded Q that mode
counting capability is altered, If such effects are
found experimentally to be significant, they must
somehow be made negligible by making appropriate
design changes, if the gauging system is to be
practical,

Temperature effects are difficult to predict: they
depend on the kinds and amounts of material that are
in the cavity and their relative contributions to
the overall loss and dielectric filling factor,
Although one can take steps to minimize the use of
temperature sensitive materials within the cavity,
one should also always maintain the temperature
constant (at the expected operating temperature)
during calibration (assuming the temperature during
flight is constant),

The Bendix math model appears to apply to only one of
the many possible distributions of loaded-Q values
that might be found for the modes in a frequency

range (fl, fz). A suggested modification of the
Bendix model is presented that should make it possible
to account for any distribution of loaded-Q values,

A normalized frequency variable is introduced, which
leads to a simple set of criteria for determining
the general type of gauging response to be expected
and, hence, the most desirable operating frequency
range,

The theory is expected to be the least accurate for
nearly empty and nearly full cavities, with the
probability for the occurrence of large percentage
errors being highest in the case where the cavity is
nearly empty.

For the new model, it is found that the unloaded,
external, and loaded Qs of the empty cavity should be
measured for most of the modes in the frequency range
(£,, £ ) if accurate values for the model parameters
are to be determined.
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Also, in the model, the effect of mode degeneracies
can only be approximated. However, since the
detailed cavity geometry in the large cavity
approximation should not affect the average number
of degeneracies, it should be possible to account
for degeneracies by a suitable calibration,

Similarly, modes may go undetected if there is
insufficient coupling. Coupling variations from
mode to mode occur because of differences in the
modal field configurations, The use of a 'space-
diversity' probe by Bendix is considered to be a
good technique for alleviating this problem, The
optimum design of the probe must be determined
empirically, but the design should not be sensitive
to the position of the probe in the cavity.

Although the model should provide a good basis for
design, its accuracy is probably not good enough to
eliminate the need for experimentally calibrating
the actual fuel-~gauging system,
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Appendix A

INTEGRATION OF A FERMI-TYPE MODE DENSITY FUNCTION
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Appendix A

INTEGRATION OF A FERMI-TYPE MODE DENSITY FUNCTION

We wish to evaluate the integral

no2
IO =jf il - (A-1)
o 1+ eY(n— )

To simplify the exponent we set

t=L -1 . (A-2)
Hence,
= 2t + 1 (A-3)
Ll v .
Equation (A-1) then becomes
- Y-
,o 2 IR 2
Jmh =-— (1 + 2t/y) (1 - tanh t)dt , (A=4)
Y
- X
2

which can be written as
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= 6 V. cosh y(ﬂ'-l)/z
25 ve-1) /2] - 3¢ /2)} (A-5)
| Y
A [v(n’-1)/2] - J (- /z)}
-3 { HLY (N o (=Y s
N
where
4 k
Jk(u) =/ t tanh t dt, k=1, 2 . (A-6)
0

These integrations can be carried out once tanh t is expanded in a

series, We must consider two regions of convergence:

(1) Near the origin

n-1 2n-1 b1

t h = - t —_ -

anh t E (-1) Bon_1 , |t] < > (A-7)
n=1
where
2n 2n

=2 2 - 1)B 2n)! -

Bono1 (2n ) 2n_1/( n) (A-8)

The coefficients B2 1 are the Bernoulli numbers, for example,

n=-

B =1/6 B = 1/30 B = 1/42
1 78, 3 /30, 5 /
B_ = 1/30 B = 5/66 B = 691/2730
7 /30, 9 /66, 11 / ?
By = 7/6, etc,
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The expansion coefficients are, therefore, given by

= 1 = =
Bl , 53 1/3, 55 2/15
= 17/31 = 62 =1
B, /315, B, = 62/2835, \811 382/155925,
813 = 21844/6081075, etc.
Thus, we can write Eq, (A-6) as
- 1 2n+k
n- n+
J (u) = E (-1) B, . u /(2n + k) (A-9)
k 2n-1

n=1

where K = 1, 2 and !u‘ < 1/2, Over this range of u (i.e,, t) we find
that use of the first seven terms of the series provides five decimal

place accuracy,

(2) Large, positive t

o
n -=2nt

tanh t =1 + 2 E (-1) e . (A-10)

n=1
Now
“ 2nt A+ me™ - @+ onwe
-2n - nu)e
f t e dt = S (A-11a)
4n
1/2
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and

U 2 _ont (2 + 2n + n2)e—u (2 + 4nu + 4n2u2)e-znu
t e dt = 3 . (A-11Db)
8n
1/2
Therefore, for u > 1/2
2
Jl(u) = J1(1/2) +u /2 - 1/8
(e8]
1 n 1+ me™ - @+ 2mye ™
e - + 2nu
. = E -1) = ) (A-12)
2 2
n=1
and
3
Jz(u) = J2(1/2) +u /3 - 1/24
[a o]
1 n (2 + 2 e - 2+ 4 anSuye 2™
+2n + n - + 4nu
L1 E : (-1) e nu + 4n u e  (A-13)
4 3
n
n=1

Taking twelve terms of these series gives five decimal place accuracy,

If u < -1/2, we have

k
Jk(u) = (-1) Jk(-u) s (A-14)

where k = 1, 2,
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FOR A MULTIRESONANT CAVITY
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Appendix B

AUTOMATIC NETWORK ANALYZER Q-~MEASURING TECHNIQUES
FOR A MULTIRESONANT CAVITY

SRI has had extensive experience in the use of automatic network
analyzers (ANA), such as the HP 8541A and 8542B, to measure and display
the Q-parameters (unloaded Q, Qu; external Q, QC; and loaded Q, QL) of
cavity resonators having a multiplicity of resonances, The resonators
studied and tested at SRI (under RADC Contracts F30602-71-C-0255 and
¥30602-74-C-0142) belonged to bandpass filters and the Q-measuring
techniques are discussed in detail in the appended 1list of publications,
A summary of these techniques is given below, Note that in the SRI
filters only one resonance may exist at a time, whereas in the NASA
fuel tanks all the resonances coexist. This difference will not affect
the Q-measuring techniques appreciably, however, and only small changes

in the computer software would be needed to deal with this difference,

A less important difference between the systems is that the SRI
filters all have two separate ports, whereas the fuel tank cavities
generally have had only one port, However, attachment of a circulator
or directional coupler to the fuel tank RF input creates an effective
output port. Alternatively, with the ''diversity’" RF probe, one element
can be used for an input port and any other element for an output port.
(Connections from the ANA would be made to the probe elements on the
cavity side of the sampling switches), The tightness of coupling at
each port can be entirely arbitrary and the insertion loss at resonance,

from port to port, is unimportant here, provided it is measurable,
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1. HP 8541A ANA

Here, the phase shift from port to port through the filter
is noted, This phase shift will have a characteristic value (defined as
phase zero) whenever the frequency is centered on a resonance, The
frequency of the ANA signal source is made to lock at this frequency,
f , while f_ 1is measured with a digital, precision frequency counter,
The insertion loss, LO, and the VSWR at each port are also measured at
fo. Next, the ANA signal source is made to lock successively onto the
frequencies fl and fz for which the phase shift is +45° and -45°, The
frequency counter also measures f1 and f2 and sends its readings, along
with f , back to the computer, The computer then works with the
following relations (in which the subscripts 1 and 2 on VSWR and Qe

denote the two ports)

f0
WTT - % (B-1)
2 1
QeIQeZ
L =10 log (B-2)
0 aQ°
L
L. X +-61— + éL (B-3)
QL Qel e2 u
Qu * Qe1
VSWR1 = ———?;———- (B-4)
u
Qu * Qez
VSWR2 = Qu (B-5)

to calculate and output the desired parameters, The entire process is

then repeated (automatically) at the next channel or mode of resonance,
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2, HP 8542B ANA

This ANA Contains a frequency synthesizer that generates
output test signals whose frequencies are stable and known to within
one part in 106. In the range 1 to 2 GHz, for example, the test fre-
quency can be stepped in increments as small as 2 kHz, The software
one uses then includes a ''search’ procedure to find mode resonance
frequencies, fO’ where insertion loss is a minimum (and = Lb); phase
locking is not used, Additional searching is also done to find the
frequencies, f1 and fz, where the insertion loss is equal to L0 + 3 dB,
Along with VSWR measurements made at fO’ the equations above remain
relevant, and the three frequencies in Eq., (B-1) should be precise to
within 1 part in 106. Extra software, for example, also can be (and

has been) prepared to signal the presence of a resonance mode curve

shape corresponding to two partially merged resonances.
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PUBLICATIONS RELEVANT TO AUTOMATIC NETWORK ANALYZER
Q-MEASURING TECHNIQUES FOR A MULTIRESONANT CAVITY

"Electronically Tunable High-Power Filter for Interference Reduction in
Air Force Communication Systems,"” Final Report, RADC Contract F30602-
71-C-0255, SRI Project 1201, Stanford Research Institute, Menlo Park,
California (June 1972),

W.B, Weir, "Automatic Measurement System for a Multichannel Digitally-
Tuned Bandpass Filter," IEEE Trans. Instrum, and Meas,, Vol, IM-23,
No, 2, pp. 140-148 (June 1974). ‘

A, Karp, "Flauto: A High~Power, High-Q Bandpass Filter with Binary
Logic Electronic Tuning,” IEEE Trans. Microwave Theory and Tech,,
awaiting publication,

A, Karp and W,B, Weir, "Recent Advances in Binary-Programmed Electroni-
cally-Tunable Bandpass Filters of the 'Flauto' Type," to be presented

at 1975 International Microwave Symposium, Palo Alto, California,

May 13, 1975,

"UHF Electronically Tunable High-Power Filter," Final Report, RADC
Contract F30602-74-C~0142, SRI Project 3321, Stanford Research Institute,
Menlo Park, California, April 1975 (in preparation).
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